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In recent  y e a r s ,  r e la t ive ly  la rge  magnetohydrodynamic  (MHD) faci l i t ies  with finite magnet ic  Rey -  
nolds number s  (R m) and a magnet ic  field deformed apprec iab ly  by conducting flows have been built. The 
invest igat ion of MHD devices  such that R m  ~ 1 encounters  diff icult ies involving the t r ans i en t s  in MHD flows 
in a pulsat ing magnet ic  field, and c h a r a c t e r i z e d  by substant ia l  MHD interact ion.  Development  of the m e t h -  
od of c h a r a c t e r i s t i c s  is  a na tura l  approach  to solving those p rob lems .  

In the genera l  case ,  the method of c h a r a c t e r i s t i c s  is  inapplicable to analys is  of nons ta t ionary  MHD 
flow pa t t e rns  with finite R m number s ,  s ince the ini t ial  sy s t em of equations is  not a hyperbol ic  sys tem.  
However,  i f  we introduce some r e s t r i c t i ons  which a re  allowable in a number  of reve lan t  ca ses ,  we can 
cons t ruc t  mode l s  of quas i -one-d imens iona l  nonsta t ionary MHD flow pa t t e rns  with hyperbol ic  quas i l inear  
init ial  s y s t e m s  of f i r s t - o r d e r  equations for  which the Cauchy data can be success fu l ly  formula ted  on the 
boundary curve  of spat ia l  o r  cha rac t e r i s t i c  type [1]. 

Two types  of p r o b l e m s  of s i m i l a r  type a r e  solved below for  conducting flows in a pulsat ing t r a n s -  
v e r s e  magnet ic  field. The f i r s t  type encompasse s  supersonic  flow pa t t e rns  of gas through channels ,  the 
second type r e f e r s  to the flow of f r ee  je ts  of i ncompres s ib l e  fluid. The MHD in te rac t ion  p a r a m e t e r  and 
the Rm number  a r e  a s s um ed  la rge .  When cer ta in  r e s t r i c t i ons  a r e  imposed  on the g e o m e t r y  of the models  
and when the e lec t r i c  field in the channels  i s  a potential  field, the p r o b l e m s  reduce  to a Goursa t  p rob lem,  
which can be handled in each case  by an e lec t ronic  digital computer ,  using the method of finite d i f ferences  
along the cha r ac t e r i s t i c  in te rva l s .  

1. Flow of a conducting gas through a n a r r o w  rec tangu la r  channel. An ideal  pe r f ec t  gas  exhibiting a 
finite conductivity ~ flows a t  a supersonic  veloci ty  u (u, 0, 0) through a t r a n s v e r s e  magnet ic  field B (0, B, 0) 
along a channel with insulat ing walls  y=  • = const  and with ideal ly  sec t ional ized e lec t rode  ~valls z = 
•  A unit a r ea  of the e lec t rode  walls  co r re sponds  to a c losed external  c i rcu i t  of r e s i s t ance  R 
and inductance L s i tuated beyond the exit  f rom the channel.  Because  of the F a r a d a y  effect,  an e lec t r i c  
cu r r en t  of densi ty  j (0, 0, j) flows through the channel. All of the cu r r en t  taps  a re  or iented in the posi t ive  
direct ion of x, while the magnet ic  c i rcui t  with high magnet ic  pe rmeab i l i t y  extends to the wails  • on 
the outside, and c loses  between the en t rance  plane (x = 0) and exit plane (x = l) of the channel. With that ge -  
o m e t r y  of the cu r r en t  leads and magnet ic  c ircui t ,  each e lementa l  cu r ren t  at point x '  induces i t s  own m a g -  
netic field only in the region x > x '  [2], so that  pe r tu rba t ions  of the magnet ic  flux densi ty do not p ropaga te  
u p s t r e a m .  S imi la r  conditions a r e  fulfilled, with a ce r ta in  approximat ion,  in the case  of na r row chan- 
nels  with no s tee l  p re sen t ,  i f  the cu r r en t  taps  a r e  l ined up with the flow velocity,  and i f  the cu r r en t  flowing 
through the na r row  channels  makes  the m a j o r  contr ibution to the induced magnet ic  field. 

The t e rmina l  effects  a r e  a s s u m e d  to be suppressed ,  for  ins tance,  on account of the instal la t ion of 
longitudinal insulat ing baffles at  the channel en t rance  and channel exit.  The va r i ab l e s  R, L, e a re  the a r -  
b i t r a ry  smooth functions R(x, t), L(x), and ~(x, t), r espec t ive ly .  The external  magnet ic  field is  independent 
of x and v a r i e s  with t ime  as  B e = Bmsin  r The e lec t rodes  at the channel ent rance  a r e  open, R(0, t ) ~  r 
so that  j(0, t) - 0, and the channel en t rance  p a r a m e t e r s  r ema in  unperturbed.  I t  is  a s sumed  that the basic 
contribution to the e lec t r i c  field E (0, 0, --E) is  made by the drop in voltage a c r o s s  R and L, while the t o -  
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tational (curl) e lec t r i c  field is  small  on account of 3B/Ot. The o rde r  of magnitude of the peak amplitude of 
the rotat ional  component of E at the channel pe r iphe ry  is  r ( l + z 0 / / ) .  If we take uB m as the cha r -  
ac te r i s t ic  amplitude of the potential  e lec t r i c  field, then neglect  of eddy cur ren t s  in the channel will be jus -  
t iffed at r (1+ z0//) << 1 and at sufficiently large L. 

The initial equations in the problem will be the continuity equations, the equations of motion, the en-  
e rgy  equations, the equations of state,  the f i r s t  Maxwell equation, and the Kirchhoff law for  a c i rcui t  of 
e lec t rodes  of unit area:  

Op 0 ( Ou Ou ) O p -- ] B 
ot o~ (pu) - O, P -g/- + ~ -~- + -07 = 

p ( o e  oe)  oK _ ,,  
--~- + u -~- + P ~ -  - . - U  

P = coast., = L ] 

Here  e is the in ternal  energy of the gas, and T is  the t empera tu re ;  the remaining notation is  that 
commonly used. 

We now proceed  to the dimensionless  var iables ,  re la t ing p, p, u, ~ to the i r  values at the channel en-  
t rance  P0, P0, u0, ~0, the fiux density to Bin, the cu r ren t  density to ~0U0Bm, L to ~0z0l ~, R to z0/~0, x to l, 
and t to l / u  O. 

We also introduce some similitude c r i t e r i a :  the magnetic Reynolds number  Pnn=gCro%l, the  mag-  
netohydrodynamic in teract ion pa r ame te r  S= r the Mach number  M = u / q / p / p ,  where 3' is  the 
adiabatic exponent, and the Eule r  number  E =po/pouo ~. We then obtain a sys tem of five equations in the un- 
knowns u, p, p, j, B: 

Opt- p OK O0 
Ot y~- + u ~------0 (1.1) 

Ou Ou Op - -  SIB 
O W + 9 ' ~  g/--+ g ~ = (1.2) 

N -  + u + (~" - -  t )  - -  ('r - -  i )  ( 1 . 3 )  at -1-u Ox p ~ P" Oz E - ~  

#x 

0j t%~L -~f + (R + ~-1) ] = u B  

We supplement this sys tem with the equations for  the total different ials  of the unknowns, 

Ou Ou Op Op d u =  ~ Ot + ~ d x ,  d p ~ - ~  dt + ~ dx 

(1.4) 

(1.5) 

and so on. 
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Following the method p resen ted  by Shapiro [3], we now express  each der ivat ive  8u/Dt, 8u/Ox, ~p/Ot, 
8p/ax, . . . ,  and so forth, in t e r m s  of the coefficients  and f ree  t e r m s  of the resul t ing sys tem of ten equa- 
tions according to C r a m e r ' s  rule ,  and then set  the numera to r  and denominator  of each der ivat ive equal to 
zero .  Then the roots  of the denominator  will yield the cha rac te r i s t i c  direct ions dx /d t ,  and the roots  of 
the numera to r  will yield the conditions for  compatibi l i ty on the cha rac te r i s t i c s .  In that way we a r r ive  at 
the cha rac te r i s t i c  normal  form [1] of the initial  sys tem,  which is equivalent to the five ord inary  d i f feren-  
t im equations acting along the charac te r i s t i c s :  

A81 u+ (1.6) 

dx E -.~dP __ Ap -d-i'du = S] [(T -- 1) %-i + AB]  along ( '~)II  = U - -  A (1.7) 

E ~ t  - -  A~ dP i' along (dz ) : u (1.8) ~/- = (~" - -  1) S - ~ -  ~ m 

dB = Rmj along ( d z )  
d~- "~- Iv = ~ (1.9) 

= o  (1.1o) RmL -d'[ = uB  --  ] (El + ~.-t) along ~ v 

All of the cha rac te r i s t i c  di rect ions  d x / d t  a re  rea l  in the problem under  discussion,  so that the or ig -  
inal sys tem of eq~mtions (1.1)-(1.5) is  hyperbol ic .  This conclusion is  a natural  one f rom a physical  stand- 
point, s ince all of the per turbat ions  in the model  const ructed propagate only downstream. 

The cha rac t e r i s t i c  sys tem (1.6)-(1.10) can be obtained only with the aid of eigenvalues and the left  
e igenvectors  of the mat r ix  of the original  sys tem (1.1)-(1.5), i f  p receded  by convers ion  to new var iables  
~7--t+x, Y=t--x. 

We shall assttme that flow is steady-state in the channel when t < 0 and that B e = O, and at the instant 
t=O, B e begins to vary in proportion to sin wt. We can then formulate the initial conditions of the problem 
on the boundary curve in the xt plane, consisting of the positive semiaxes x and t. In effect, when t = O, 
there is no magnetohydrodynamic interaction, and all of the parameters along the x axis are known from 
the previous steady state. Furthermore, when x= 0 we have j-- O, and the channel entrance parameters 
remain unaltered, Since none of the perturbations propagate upstream, by hypothesis. 

Since all of the characteristics have a nonnegative slope dt/dx, the selected boundary curve allows 
us to construct a single-valued solution of the problem in the region of influence (the half-strip 0-<x -< I, 
0 - t < ~o) under the condition that the coefficients of the initial system be smoothly varying coefficients [1]. 

In view of the fact that the x axis and the t axis are characteristics, we thereby arrive at the Gout- 
sat problem. Its peculiar features are that the initial data cannot be specified arbitrarily on the boundary 
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I.Z ~ ~ . I  I curve, but must sat isfy the appropriate character is t ic  
~-J--t! 1~.~--~rJ,~-~-=L] ~ S~ ~" equations, and in the case in point Eqs. (1.9) and (i.i0), 

as well as the compatibili ty conditions at point CO, 0). I t  

~0 I i i  ~ ~ I is readily seen that these res t r ic t ions  are met.  Equation 
ik/O/i ~ ~10/ ~ (1.9) is  satisfied identically, while Eq. (i . i0) requires 

0 i . /~ } /  }•' tt!/ '7 i.e., that the emf induced in open circuit be offset by a 
drop in the voltage from zero current  across  an infinite 

J I Z  141 ///J I I  external res is tance,  as is  physically evident. 

It is  to be noted that the res t r ic t ion introduced, 
Fig. 5 R (0, t)-* % is  not a str ingent one, since the calculated 

origin of the x axis can be shifted somewhat upstream, 
when the continuous distribution R (x, t) is a rb i t rary ,  to where there are no electrons and no current ,  and 
R (x, t) can be approximated with an essential  singularity, within the framework of the one-dimensional ap- 
proximation. 

The following conditions were assumed in the calculations: 

u (0,  t) = u ( z ,  0)  = p (0,  t) = p (z ,  0)  = p (0 ,  t) = p (z, 0) = 1 
B(0, t)=sin2nt, 13(z, 0)=](0, t )=i (x ,  0)=0 

The sys tem (1.6)-(1.10) was solved on an electronic digital computer by the method of finite differ-  
ences taken along the character is t ic  intervals  [41. The base grid formed by the charac ter i s t ics  IV and V, 
with mesh dimensions Ax =At= i0 -~ and Ax=At= 10 -3, was employed. The remaining charac ter i s t ics  were 
produced through the point with unknown parameters  by l inear interpolation of the data on the preceding 
computational step. Fur ther  fragmentation of the computational grid led only to a negligible further cor-  
rection of the resul ts ,  with the l imits of 5%. The final resul ts  were verif ied in spot checks by direct  sub- 
stitution into the initial sys tem (1.D-(1.5) recorded in the form of finite differences on the intervals  Ax= 
At= 0.05. The e r ro r  amounted to ~ 3% of the t e rms  irf the equations greatest  in absolute value, up to t m 3. 

Figure 1 shows the distribution of parameters  with respect  to t for x= 0.89 at e= 1, L=R=x-1/6, 
M0=5, E=0.024, R m = S = I ,  and Fig. 2 shows the distribution under the same conditions, except for Rm= 
S=3. In addition to the basic parameters ,  the curve of the electromagnetic f o r c e f  =jB is  plowed here  
(f > 0 a rb i t ra r i ly  corresponds to a decelerating force,  w h i l e f  < 0 a rb i t ra r i ly  corresponds to an acce le r -  
ating force). 

Clearly,  when the external  sinusoidally varying field is switched on, there ensues at f i r s t  an appre-  
ciable excursion of j(t) and B(t) into the upper half-plane, followed by a tendency to certain s teady-state  
values. Typically, j(t) var ies  qualitatively in the same manner  as in a conventional t ransient  when a si-  
nusoidal voltage is switched on across  an inductive-resist ive circui t  (e.g., see [5]). When ~0 increases ,  
and concomitantly R m and S increase,  the current  increases  slightly (the base ~0U0Bm increases) ,  but the 
averaged f o r c e f  in these instances declines because of the negative instantaneous values o f f  (t), high in 
absolute value, and due to the more inductive character  of the circuits .  This may account for the lower 
p r imary  burst of p(t) in response to large R m and large S. I t  is  c lear  from Fig. 1 and from Fig. 2 that the 
increase  in R m and in S also involves the transient,  since the t ime constant of the c i rcui ts  increases .  The 
upward displacement of the B(t) curve with respect  to the curve Be(t) = sin 2vt is  explained by the effect 
exerted by the induced magnetic field. 

It is  safe to assume that sufficiently short p ressure  surges in Fig. 1 and Fig. 2, in response to low L 
and appreciably large S, lead to discontinuous solutions not covered by the present  analysis .  

Fluctuations in the temperature  of the gas are determined by the rat io p/p. 
Curves of the distribution of parameters  with respect  to x are plotted in Fig. 3 and Fig. 4 for Rm= 

S=3 and for different  instants  of t ime (Fig. 3 shows continuous curves plotted for t = 0.5 and dashed curves 
plotted for t= 0.55; Fig. 4 shows continuous curves plotted for t=  0.75 and dashed curves plotted for t=  1.5). 
The current  density and the flux density increase  with respect  to x, while the p(x) curve and the p(x) curve, 

7 9 0  



together  with the p(t) cu rve  and p(t) cu rve  in Fig. 1 and Fig. 2, conf i rm the i n f e r r ed  format ion  of c o m p r e s -  
sion waves  in the channel. 

2. Motion of a f r ee  jet  of i ncompres s ib l e  invisc id  conducting fluid. The jet  advances  with veloci ty  
u (u, 0, 0) and tangent ia l ly  contacts  the s ides  of the e lec t rodes ,  sec~ionalized with r e s p e c t  to x, such that  
z=  • =const ,  each pa i r  of which is  connected to an ex te rna l  c i rcu i t  with ohmic r e s i s t a n c e  R '  and in -  
ductance L ' .  In the region y> y0/2, y< -Y0 / 2 ,  we find a s teel  magnet ic  path ~ -  co) ins t rumenta l  in e s t ab -  
l ishing the magnet ic  field B (0, B, 0). The geome t ry  of the magnet ic  c i rcu i t  and of the cu r r en t  taps  is  the 
s ame  as in the p reced ing  p rob lem.  The jet  moves  through the n a r r o w  c lea rance  Y0 between the steel  walls 
without touching them,  i .e . ,  6 < Y0, where  6 is  the th ickness  of the jet  with r e s p e c t  to y. A cu r ren t  j (0, 0, j) 
flows in the jet  and es tab l i shes  a field E (0, 0, - E )  thanks to the vol tage drop in the external  c i rcui t s ,  a 
field which is  much l a r g e r  than the field due to e lec t romagne t ic  induction in the channel.  The end effects  
a r e  e l iminated  by lengthwise baffles or  by extending the magnet ic  field beyond the confines of the channel. 
The functions R '  (x,t) and L '  (x) a r e  speci f ied  smooth functions at x >-0, t ~  0; R '  (0, t) -~ r162 The ex te rna l  
magnet ic  field B e v a r i e s  with t ime  as  Ban sin cot. The gravi ta t ional  and bulk dynamic fo rces  act  along the 
x axis ,  and the i r  acce le ra t ion  q(t) i s  specified.  The conductiVity of the jet  ~= const.  

The dynamics  of the t rans ien t  in the case  of e lec t romagne t ic  p a r a m e t e r s  is  c h a r a c t e r i z e d  in the one-  
dimensional  approximat ion  by the Kirchhoff  equation for  the c i rcu i t  of one e lec t rode  pa i r  

Ot 

where  Ax is  the longitudinal dimension of the e lec t rode  and I= j6Ax is  the cu r r en t  of the e lec t rode  pa i r .  

When the continuity equation u6 ~ const  i s  taken into account, we have 

= j + . + L (2 

The equation of motion of the jet  is  s ta ted  in the fo rm 

Ou Ou jB 
O---F + u -#~ = p + q 

The th i rd  ini t ial  equation will be the Maxwell  equation 

OB / Ox ----~o/ (2.2) 

The notation for  the l as t  equation depends on the way B is  ave raged  over  the t r a n s v e r s e  c r o s s  s e c -  
tion. The f o r m  of Eq. (2.2) co r r e sponds  to averaging  of B over  the c r o s s  sect ion of the jet  p rope r .  But i f  
B i s  ave raged  ove r  the en t i re  c l ea rance  Y0, then we have to wri te  ins tead  

0B 5 
O-7 = ~0 -~7 J (2.3) 

In what follows, the fo rm (2.2) will be used, even though the introduction of Eq. (2.3) ins tead  of Eq. 
(2.2) would not compl ica te  the p r o b l e m  in this  method.  

In what follows, we shal l  r e f e r  x to the channel length l, t to l / u o ,  B to Bin, j to (ru0Bm, R '  to z0/ 
~Ax60, L '  to #0z0/Z/Ax60, q to uoZ/l ,  and we shall  introduce the p a r a m e t e r s  

R m = ~o6Uo l, S = ~Bm21 
Duo 

where  p is  the densi ty  of the fluid and u 0 and 50 a r e  the ve loc i ty  and th ickness  of the jet  at the channel entry .  

Then the i~it ial  s y s t e m  of equations becomes  

auo___7 + u _F; ,, - -  S j B + q (2.4) 

qi (2.5) ojat ~- j - ~ =  i [u2B - -  ] (u + R')] - -  S~'-B~ + -U 

OB 
Ox - -  R ~ ]  (2.6) 

Tf we make use of Eq. (2.3) instead of Eq. (2.2)p then the last equation appears in the form 

OB j _ _  
0--'~ ~ Rm'  ~ Rrn' = Rm 50 

Y9 
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The s y s t e m  (2.4)-(2.6), as  in the preceding  p rob lem,  reduces  to the no rma l  cha r ac t e r i s t i c  fo rm 

(2.7) 

di i ( dx )  = 0 (2.8) 
dt u ~ II 

(2.9) 

at  t < 0, and Be= sin wt at t >-0, then ,  as e a r l i e r ,  the initial  conditions m a y  be specif ied 

du = q - - S ] B  along ( d x )  = u  
d-W --d-i i 

du 1 [u~B - -  ] (u ~ R')] along 
dt~-- ~mL ~ 

dB)dx  = R , , ]  along (dx /d t )m = oo 

When B e ~ 0 
on the pos i t ive  s em i axes  x and t, which a re  c h a r a c t e r i s t i c s  I I  and III ,  and the p rob lem reduces  to the Gour -  
sat  p rob lem.  

We a s s u m e  he re  

u (0, t) -- u (z, 0) -- i, i (0, t) = i (z, 0) = 0 (2.10) 
B (x, 0) = B  e(O)= O, B (O,t) = B  e =  sin2~tt 

Conditions (2.10) a re  sa t i s f ied  by cor responding  additional r e s t r i c t i ons  in the cha r ac t e r i s t i c  p rob -  
lem,  and a r e  in a g r e e m e n t  at the point (0,0). 

In o rde r  to solve the no rma l  fo rm (2.7)-(2.9) with the init ial  conditions (2.10), we make  use of the 
s ame  method as  in the f i r s t  p rob lem.  The gr id  in the xt plane with cell  d imensions  Ax = A t =  10 -2 ( in ter -  
va ls  along the H and I]/ cha rac t e r i s t i c s )  was used. We ass igned  q=0 ,  R m = S = 5 ,  R ' =  L '=x-1 /5 .  The s e l e c -  
t ive subst i tut ions of the r e s u l t s  for  t ~ 2  in the init ial  s y s t e m  (2.4)-(2.6) yielded an e r r o r  ~ 3% in the t e r m s  
of highest  absolute  value. 

F igure  5 shows how the p a r a m e t e r s  va ry  with r e s p e c t  to t when x = 0.89 (continuous curves)  andwhen 
x=0 .29  (dashed curves) ,  for  R m = S = 5 .  As in the f i r s t  p rob lem,  the veloci ty  lags slightly behind the osc i l -  
lat ions of the e l ec t romagne t i c  f o r c e r  = jB,  and a m o r e  pronounced acce lera t ion  of the fluid by the f o r c e f  
d i rec ted  downs t ream is  observed.  The osci l la t ions in u bring about an i nve r se  change in ~ and, a c c o r d -  
ingly, in the in terna l  r e s i s t ance  between each paii: of e lec t rodes ,  and that has  a tel l ing ef fec t  on the t r a n -  
s ient  p r o c e s s  in the ca se  of the e lec t romagnet ic  p a r a m e t e r s .  That could be the explanation,  specif ical ly ,  
for  the behavior  of the j(t) cu rve  at x=0 .89 ,  where the mean  value r i s e s  ini t ia l ly to t ~ 3  and only l a t e r  
tends toward  the t axis .  In the init ial  port ion of the jet  (x= 0.29), the osci l la t ions in u a re  much l e s s  p r o -  
nounced, and the behavior  of j(t) i s  the same  as in f ami l i a r  t r ans ien t  p r o c e s s e s  when va r i ab le  voltage is  
switched on a c r o s s  inductances  [5] (see also the dashed curves  in Fig. 5). 

Note that  the method under  discussion allows magnet ic  flux to be switched on in both p rob l ems  with 
an a r b i t r a r y  ini t ial  phase ,  i .e . ,  B e = s i n  (wt+ %). Actually,  j (x, 0) cannot v a r y  s tepwise because of the in -  
ductances in the c i rcu i t s ,  and the ini t ial  conditions on the x > 0 semiax i s  a re  de te rmined  by the preceding  
s teady s tate ,  under  the condition that the ro le  played by two-dimens ional  eddy cu r r en t s  in switching on the 
field g0 ~ 0 be negligible.  

The analys is  c a r r i e d  out a lso  encompasses  the case ,  for  both flow pa t te rns  constant ly  in a pulsat ing 
magnet ic  field, when the e l ec t rodes  were  open at t < 0 and j (x, t) - 0 throughout the channel, but where  the 
externa l  c i rcu i t s  with a r b i t r a r i l y  va ry ing  p a r a m e t e r s  were  c losed at t - 0 .  
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